Quick Start

  1. Download the appropriate NVidia driver from See available drivers in Supported NVIDIA Drivers.


    The driver .run file will be named NVIDIA-Linux-x86_64-352.*.run We strongly advise manually downloading and installing the appropriate NVidia driver for your system as opposed to using a package manager.

  2. Once you have downloaded the driver, change to the directory containing the driver package and install the driver by running, as root, sh ./NVIDIA-Linux-x86_64-***.**.run See for more detailed installation instructions.


    FastROCS TK does not require the CUDA Toolkit/runtime/SDK to be installed. Only the NVidia driver need be installed using the .run file named NVIDIA-Linux-x86_64-***.*.run Please ensure you install a supported driver.


    The output of the nvidia-smi command is extremely useful when debugging FastROCS TK issues. Please include the output from nvidia-smi in any request to


    The NVidia kernel module can often conflict with the open source Nouveau display drivers depending on your specific Linux distribution. The NVidia documentation is a much more complete and up-to-date source for information on how to work around this issue. See:

  3. Install the OpenEye Toolkits into a virtual environment

    $ mkvirtualenv fastrocs
    (fastrocs) $ pip install --extra-index-url OpenEye-toolkits
  4. Once installed, follow the instructions in Tutorial 0: Basic usage of FastROCS TK to get you started.

Supported Hardware

FastROCS TK is currently only supported on Linux with NVidia graphics cards. FastROCS TK will work with any NVidia GPU released with a compute capability of 3.0 or higher. This includes graphics cards for high performance computing (Tesla), professional workstations (Quadro), and gaming (GeForce). For a comprehensive table of which GPUs fall into which compute capability category please refer to the CUDA wikipedia page. FastROCS TK has dropped support for all Nvidia Tesla, GEForce and Quadro cards with a compute capability < 3.0. This includes all GPUs with Fermi architecture, i.e. Tesla C2050 & GEForce GTX 430. The following graph shows the performance of FastROCS TK on some modern GPU models.



Performance can vary with driver versions and other factors. The above graph is meant as a general guide of what performance customers can expect. It is highly recommended to go with a certified vendor like Exxact to ensure best performance.

Supported Operating Systems

  • RHEL6 / CentOS 6
  • RHEL7 / CentOS 7
  • Ubuntu 16.04
  • Ubuntu 18.04

Supported NVIDIA Drivers

FastROCS TK is forward compatible with all Tesla, GEForce and Quadro drivers on Linux. The correct driver for your system can be found on the NVidia driver download page. From the drop down menu choose your system specifications and the most recent CUDA toolkit version. nvidia-smi can be used on your system to find out what GPU model is installed. Also, as FastROCS TK is only supported on Linux platforms, ensure Linux 64-bit is chosen as the Operating System.

Performance Tuning

To get the most performance out of an NVidia Graphics card switch persistence mode on across all cards on the system (sudo privilege required):

$ sudo nvidia-smi -pm 1
Enabled persistence mode for GPU 00000000:03:00.0.
Enabled persistence mode for GPU 00000000:84:00.0.
All done.

This can also be done using the persistence daemon so that persistence mode is automatically enabled after reboot. For instructions on how to enable the persistence daemon see the NVidia docs.