SZYBKI Theory¶
Force Field¶
Theory documentation for forcefields is available from OEFF theory.
Entropy evaluation¶
Ligand entropy is evaluated as a sum of configurational entropy (\(S_c\)) and solvation entropy (\(\Delta S_s\)):
Configurational entropy¶
Configurational entropy is calculated as:
where q is the conformation dependent partition function:
Here \(q_t\), \(q_{ir}\) and \(q_{iv}\) are the translational, rotational and vibrational partition functions respectively, \(n_c\) is the number of unique conformations in the ensemble. All 3 partition functions are calculated from the classical statistical mechanics expressions which could be found in [McQuarrie-1976]. Vibrational frequencies for each conformation, needed for evaluation of \(q_{ir}\) are derived from diagonalization of a Hessian matrix obtained from Quasi-Newton optimization when convergence is achieved. Eigenvalues \(\lambda_i\) of the mass-weighted Hessian:
are converted into wavenumbers \(\tilde{\nu}_i\) according to:
Solvation entropy¶
Solvation entropy is split into electrostatic and hydrophobic parts:
The electrostatic part of solvation entropy is divided in to the bulk component and tight electrostatic polar solute - water interactions (hydrogen bonds). The bulk contribution is estimated from the temperature dependence of the solvent dielectric constant as:
The second term of the electrostatic solvation entropy is estimated as a constant of 28 J/(mol K).
The hydrophobic term, \(\Delta S_{s,hyd}\), is evaluated as:
where \(\Delta G_{s,hyd}\) consists of 3 components:
describing the free energy of cavitation, solute-solvent van der Waals and inductive terms respectively. The cavity formation term is calculated from Scaled Particle Theory [Pierotti-1976]. Analytical expressions for \(\Delta G_{VdW}\) and \(\Delta G_{Ind}\) terms are also taken from the 1976 Pierotti review.
Protein-bound ligand entropy¶
Configurational entropy of a protein bound ligand is calculated totally as vibrational entropy for 3N modes, assuming that 3 rotational and 3 translational degrees of freedom of a solution ligand are transformed into low-vibrational degrees of freedom for the bound ligand.
Solvation entropy for a ligand in the active site is assumed to be a sum of its fractional value in solution determined by the percentage of the ligand surface exposed to the solvent, \(f\Delta S_s\), and a partial desolvation entropy of the protein active site, \(\Delta S_{des}\)
where f is the fraction of ligand surface exposed to the solvent. It is important to notice that \(S_{protein}\) is not an experimentally measurable value, and that only the difference between \(S_{protein}\) and \(S = S_c + \Delta S_s\) might be compared with experimental binding entropy.